Lignocellulose degradation and subsequent metabolism of lignin fermentation products by the desert black Bedouin goat fed on wheat straw as a single-component diet.

نویسندگان

  • N Silanikove
  • A Brosh
چکیده

Bedouin goats were fed on wheat straw as a single-component diet under two watering regimens, drinking once daily or once every 4 d, in order to clarify whether lignin-degradation products were absorbed, metabolized and excreted in urine. Acid-soluble lignin accounted for 220 g/kg total lignin, its digestibility was the highest (0.87) and was unaffected by water deprivation. Acid-insoluble lignin accounted for 780 g/kg total lignin and its digestibility increased during water deprivation from 0.21 to 0.41. Alkali-soluble lignin accounted for 320 g/kg total lignin and its digestibility increased during water deprivation from 0.44 to 0.53. Digestibility of structural carbohydrate was considerably higher than that observed in other domesticated ruminants fed on wheat straw. It responded positively to water deprivation, increasing from 0.63 to 0.73 with cellulose and from 0.61 to 0.68 with hemicellulose. The amount of urinary aromatic acids, mainly in the form of hippuric acid, considerably exceeded the potential contribution of any non-lignin component which might affect the excretion of aromatic acids. A considerable percentage (71-76) of the apparently digested lignin was not accounted for as soluble phenolic compounds in faeces or as aromatic acids in urine, and hence was apparently completely metabolized. Lignin is a key substrate which is extensively digested in goats fed on low-quality forage, with subsequent absorption of endproducts. This enhanced the availability of structural carbohydrates for fermentation and was associated with excretion of high-energy metabolites in the form of benzoic and hippuric acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lignocellulose degradation and subsequent metabolism of lignin fermentation products by the desert black Bedouin goat fed on

Bedouin goats were fed on wheat straw as a single-component diet under two watering regimens, drinking once daily or once every 4 d, in order to clarify whether lignin-degradation products were absorbed, metabolized and excreted in urine. Acid-soluble lignin accounted for 220 g/kg total lignin, its digestibility was the highest (0.87) and was unaffected by water deprivation. Acid-insoluble lign...

متن کامل

Effects of fiber source on apparent digestibility and ruminal fermentation parameters in sheep fed high-concentrate diets

Sixteen rams (mean age: 13 mo; mean live weight: 40.0 ± 2.4 kg) were randomly allotted to four dietary treatments in a completely randomized design (4 rams per treatment). Diets (dry matter basis) contained 65% concentrate and 35% alfalfa hay (control diet, T1), 35% wheat straw (T2), 35% barley straw (T3) or 35% maize straw (T4). Total-tract apparent digestibility for dry matter, organic matter...

متن کامل

Lignocellulose Degradation by Daedaleopsis confragosa and D. tricolor

The properties and capacities of the ligninolytic enzymes of Daedaleopsis spp. are still unknown. This is the first study on the effect of plant residues and period of cultivation on the properties of Mn-oxidizing peroxidases and laccases of D. confragosa and D. tricolor, as well as their ligninolytic potentials. Wheat straw was the optimal carbon source for synthesis of highly active Mn-depend...

متن کامل

Induction of wheat straw delignification by Trametes species

Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent pro...

متن کامل

Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors

Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 1989